The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major.

نویسندگان

  • B Nare
  • L W Hardy
  • S M Beverley
چکیده

Trypanosomatid protozoans depend upon exogenous sources of pteridines (pterins or folates) for growth. A broad spectrum pteridine reductase (PTR1) was recently identified in Leishmania major, whose sequence places it in the short chain alcohol dehydrogenase protein family although its enzymatic activities resemble dihydrofolate reductases. The properties of PTR1 suggested a role in essential pteridine salvage as well as in antifolate resistance. To prove this, we have characterized further the properties and relative roles of PTR1 and dihydrofolate reductase-thymidylate synthase in Leishmania pteridine metabolism, using purified enzymes and knockout mutants. Recombinant L. major and Leishmania tarentolae, and native L. major PTR1s, were tetramers of 30-kDa subunits and showed similar catalytic properties with pterins and folates (pH dependence, substrate inhibition with H2pteridines). Unlike PTR1, dihydrofolate reductase-thymidylate synthase showed weak activity with folate and no activity with pterins. Correspondingly, studies of ptr1(-) and dhfr-ts- mutants implicated only PTR1 in the ability of L. major to grow on a wide array of pterins. PTR1 exhibited 2000-fold less sensitivity to inhibition by methotrexate than dihydrofolate reductase-thymidylate synthase, suggesting several mechanisms by which PTR1 may compromise antifolate inhibition in wild-type Leishmania and lines bearing PTR1 amplifications. We incorporate these results into a comprehensive model of pteridine metabolism and discuss its implications in chemotherapy of this important human pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy.

Protozoan parasites of the trypanosomatid genus Leishmania are pteridine auxotrophs, and have evolved an elaborate and versatile pteridine salvage network capable of accumulating and reducing pteridines. This includes biopterin and folate transporters (BT1 and FT1), pteridine reductase (PTR1), and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Notably, PTR1 is a novel alternative pteri...

متن کامل

New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.

Leishmania and other trypanosomatid protozoa require reduced pteridines (pterins and folates) for growth, suggesting that inhibition of these pathways could be targeted for effective chemotherapy. This goal has not yet been realized, indicating that pteridine metabolism may be unusual in this lower eukaryote. We have investigated this possibility using both wild type and laboratory-selected ant...

متن کامل

Biochemical and Genetic Tests for Inhibitors of Leishmania Pteridine Pathways

The study of antifolate-resistant mutants of the protozoan parasite Leishmania has provided useful information about genetic processes such as gene amplification and mutation and knowledge of the unique features of the pteridine metabolic pathway in this primitive eukaryote. The novel bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is an essential enzyme, yet most DHFR-TS in...

متن کامل

Leishmania major pteridine reductase 1 belongs to the short chain dehydrogenase family: stereochemical and kinetic evidence.

Pteridine reductase 1 (PTR1) is a novel broad spectrum enzyme of pterin and folate metabolism in the protozoan parasite Leishmania. Overexpression of PTR1 confers methotrexate resistance to these protozoa, arising from the enzyme's ability to reduce dihydrofolate and its relative insensitivity to methotrexate. The kinetic mechanism and stereochemical course for the catalyzed reaction confirm PT...

متن کامل

Inhibition of Leishmania major PTR1 Gene Expression by Antisense in Escherichia coli

BACKGROUND Protozoa related to Trypanosome family including Leishmania, synthesize enzymes to escape from drug therapy. One of them is PTR1 that its enzymatic activity is similar to dihydrofolate reductase (DHFR). Dihydrofolate reductase - thymidylate synthase has a major role in DNA synthesis, if it is inhibited, the result would be the death of parasite. Since PTR1 activity is similar to DHFR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 21  شماره 

صفحات  -

تاریخ انتشار 1997